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Velocity profles and fence drag for a turbulent boundary 
layer along smooth and rough flat plates 
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The properties of a turbulent boundary layer were investigated as they relate to 
the form drag on a two-dimensional fence. Detailed measurements were per- 
formed at zero pressure gradient of velocity profiles along smooth, rough and 
transitional flat plates. Upon comparison with other published data, these 
measurements resulted in simple formulae for the displacement thickness and 
the local shear coefficient and in a modification to the universal velocity defect 
law for equilibrium boundary layers. 

With these boundary layers, experiments were performed to determine the 
drag on a two-dimensional fence. These data were analysed along with data from 
previous investigations. It was found that after suitable blockage corrections all 
form-drag coefficients for two-dimensional fences collapsed on a single curve if 
they were calculated with the shear velocity as the reference velocity and plotted 
against the ratio of the fence height to the characteristic roughness parameter of 
the approaching flow. 

1. Introduction 
The flow of a turbulent boundary layer past a two-dimensional fence is of 

fundamental importance to the theory of modelling wind forces on structures. 
The pressure distribution around a structure located in a turbulent boundary 
layer and the velocity field in the vicinity of the structure are strongly influenced 
by the characteristics of the boundary layer as well as the geometry of the struc- 
ture. These must therefore be simulated in wind-tunnel tests. According to 
present practice, similarity with the prototype is assumed to be obtained 
(according to Jensen & Franck 1965) by using a geometrically similar model and 
holding h/y’ the same in model and prototype. Here y’ is the characteristic 
roughness parameter (designated as zo in meteorological literature) and h is the 
height of the structure. This implies that for a structure of a particular shape the 
(suitably defined) form-drag coefficient depends on h/y’ only. The experiments 
reported here were performed primarily with the intention of testing this con- 
clusion and were carried out using solid two-dimensional fences. The drag studies 
were, however, preceded by a detailed experimental investigation of the charac- 
teristics of equilibrium boundary layers inasmuch as these have considerable 
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bearing on the form drag on the fence. The fence represents an idealized form of 
structure. It does occur, however, in several practical situations. Agricultural 
engineers dealing with shelter belts, hydraulic engineers designing spur dikes for 
river training and structural engineers calculating wind loads will find inform- 
ation on fence drag useful. 

2. Critical review of literature 
In  recent years Plate (1964), Good & Joubert (1968) and Ranga Raju & Garde 

(1970) have carried out investigations of the form drag on a two-dimensional 
fence placed in a turbulent boundary layer with zero pressure gradient along a 
smooth wall. They essentially used the functional relationship 

cDO = f (6/h, uO h / y )  (2.1) 

for the analysis of their experimental data. Here the drag coefficient 

where FDO is the drag force (corrected for blockage) per unit length of the fence 
(of height h), p is the mass density of the fluid, 8 is the nominal thickness of the 
undisturbed boundary layer at the section where the fence is placed and U, 
is the free-stream velocity. (Ranga Raju & Garde in fact used the average velocity 
on the vertical centre-line of the tunnel in their computations, but since this 
velocity was not significantly different from the free-stream velocity in their 
set-up, one could use their relations for the drag coefficient in conjunction with 
the free-stream velocity without appreciable error.) Analysis of the data of Plate 
(1964) and Ranga Raju & Garde (1970) by the latter indicated the parameter 
Uoh/v in (2.1) to be unimportant and, consequently, they obtained a relation 
between CDo and 6/h. The relationship was subsequently modified slightly on 
inclusion of the data of Good & Joubert, which cover a larger range of 6/h; this 
relationship is shown in figure 1 ( D  is the depth of the tunnel in this figure). 
However, within the scatter on this plot, the data of Good & Joubert show a 
small but systematic influence of the Reynolds number at large values of S/h 
(Good & Joubert 1968), thus rendering constancy of 6/h an inadequate criterion 
for modelling a t  such values of S/h. 

Good & Joubert (1968) analysed their data for zero pressure gradient using the 
functional relation 

in which u* is the undisturbed shear velocity at the station where the fence is 
placed, v is the kinematic viscosity and 

(2.3) C” =f(u*/Uo, U*h/V) ,  

FD is  the drag force (uncorrected for blockage) per unit length of the fence. 
Since pu$ is equal to the shear stress at the wall, C* is twice the ratio of the 
area-mean pressure difference across the fence to the wall shear stress. It may be 
noted that Good & Joubert (1968) did not correct their data for blockage effects. 
Analysis of their data on the basis of (2.3) indicated that C* is uniquely related 
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IGURE 1. Drag coefficient of a two-dimensonal fence on a smooth plate. 

V 0 0 A 
Ranga Raju & 

Source Garde Plate Good & Joubert Ark & Rouse 

32.40 183.0 91.50 - 
- D(cm) 

Dlh 4.0-32.4 36.0-72.0 9‘9-288.0 

to u*h/v at values of u,h/v < lo3; at higher values of u*h/v, C* was shown to be 
dependent on both u,h/v and u*/U, (for the data of Good & Joubert this bound 
on u,h/v corresponded to h/S < 0.4-0.5). But significantly, the data at high 
u,h/v values correspond to the larger fences, for which blockage corrections would 
be large, and it would be interesting to test the validity of the above conclusion 
after correcting the results for blockage effects. 

Ranga Raju & Garde (1970) evolved a correction for blockage for normal plates 
with symmetrical rear splitter plates in a uniform stream. Their results are 
shown in figure 2 and the blockage correction can be written as 

CD, = CD ( I  - h/D)2’85, (2.5) 

where CDis the uncorrected drag coefficient and D is the depth of the unobstructed 
stream. In terms of the drag forces, this equation can be written as 

F’o = F’( 1 - h/D)2.s5. (2.6) 

The applicability of this blockage correction can be investigated for fences in 
boundary layers by using available data. Examination of (2.1) shows that if 
fences of different heights are tested in a boundary layer holding S/h and U, h/v 
constant, and if the values of CD, obtained by using (2.5) remain the same for 
all these fences, then the blockage correction can be considered valid for fences 
in the boundary layer also. Table 1, which is based on data collected by Ranga 
Raju (1967), clearly shows that, for approximately constant values of U,h/v and 
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FIGURE 2. Blockage correction for two-dimensional normal plates. 

0 + 0 
Ranga Raju & Ranga Raju & 

Source Arie & Rouse Garde Garde 

D (em) - 32.4 81.0 

2.0 32.40 12.70 1-68 1 . 7 ~  lo4 0.84 1.13 0.93 
4.0 32-40 6.72 3.40 1 . 8 ~  lo4 0.85 1.36 0.93 

TABLE 1. Drag coefficients corrected for blockage 

6/h, CD varies with the height of the fence whereas C,, does not. Therefore one 
may use (2 .5 )  or (2.6) with confidence to correct the data on fences in a boundary 
layer for the blockage effect. 

It is emphasized that (2.5) is an empirical equation for blockage corrections. 
In  fact doubts can be raised about the correctness of the form of the equation, 
particularly as to whether the correction should not be additive rather than 
multiplicative. However, for small h/D values, (2.5) can be written as 

Maskell's (1963) equation for blockage correction can be written in the form 
(Ranga Raju & Garde 1970) 
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FIGURT; 3. Good & Joubert data on smooth walls after blockage correction. 
+, u..+/U,, = 3.48 x 10-2; A, U*.U,, = 3.60 x 10-2; m, u.*/UO = 3.75 x 

The similarity between (2.7) and (2.8) is obvious when one considers that the 
variation of C, with hlD is small at low h/D. Equation (2.7) implies an additive 
correction. An additive correction is justified if the upstream pressure is un- 
affected by blockage. However, Ranga Raju & Garde (1970) have shown that the 
upstream pressure is in fact affected by blockage, though only slightly, at high 
h/D. In  such cases the multiplicative form of blockage correction, viz. (2.5), may 
be justified. As shown by Ranga Raju & Garde (1970), (2.5) is in excellent agree- 
ment with (3.8) over a large range of h/D. In  the light of this result and also in 
view of the applicability of (2.5) to bodies placed in boundary-layer flow, this 
equation has been used in the present study despite its empirical form. 

The data of Good & Joubert (1968) were adjusted accordingly, and the 
corrected drag coefficient C;, defined as 

has been plotted against u* h/v in figure 3. It may be seen that within experimental 
scatter C$ and u* h/v are uniquely related over the entire range of u* hlv, but the 
range of u*fUo values is too small to permit the conclusion that this ratio really 
has no influence on the drag coefficient. 

3. Scope of present work 
One of the objectives of the present study was to carry out experiments over 

a relatively large range of uJU0 and establish clearly whether this parameter is 
indeed unimportant as figure 3 seems to show. The experiments were performed 
such that the values of u*/Uo for the combined data of the authors and of Good 
& Joubert range from 3.5 x 10-2 to 6.5 x 10-2. Furthermore, i t  was desired to 

25-2 
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.u*k,lv 

FIUURE 4. Relation for roughness parameter y‘ on basis of Nikuradse’s data. 

collect experimental data for the cases of rough and transitional boundaries. 
The investigation was also intended to include detailed measurements of the 
equilibrium boundary layer in these cases. The study was restricted to turbulent 
boundary layers with zero pressure gradient (in the absence of the fences). 
Only two-dimensional, solid, sharp-edged fences were studied. 

4. Analytical considerations 
The logarithmic velocity -profile law for turbulent boundary layers along rough 

surfaces, valid outside the viscous sublayer in the neighbourhood of the roughness 
elements, is given by 

_ -  , 2 4 1  Y - -log -. 
uB k ey’ 

Here u is the velocity of flow at a height y above the boundary, k is K&rmin’s 
constant and y‘ is the roughness length parameter, commonly used in meteoro- 
logy and defined such that u = 0 at y = y’ from (4.1). On smooth surfaces y’ is 
directly proportional to v/u* and (4.1) thus reduces to 

U I  

u* k Y 
-- - -logeZc*~+Cs. 

The values of C, and k given by Coles (1956) show that for smooth boundaries 

y’ = 0.128v/u,. (4.3) 

On rough surfaces the ratio of y’ to the physical roughness heights depends on 
roughness geometry and Reynolds number; for the sand-grain roughness (height 
ks) of Nikuradse (see Schlichting 1968, chap. 20), y’ = &ks for uB ks/v > 80. For 
lower values of uBkS/v,  y‘lks is a function of u,kJv; using Nikuradse’s data on 
sand-coated surfaces, the relationship between these parameters has been 
obtained and is shown in figure 4. 

Experimental determination of y’ from a measured velocity profile is possible 
with the help of the law of the wall (valid for y/6 less than approximately 0.15), 
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FIGURE 5. Sketch of test arrangement. 

namely (4. l ) ,  when a suitable value is assumed for k. In  the absence of a measured 
velocity profile, one can use figure 4 to find y’ provided that the value of IC, for 
the surface is known. 

The functional relationship for the general case of a two-dimensional fence 
placed in a turbulent boundary layer may be written as 

PDO = f ( h , p ,  Y‘, u*, UO). (4.41 

It may be noted that knowledge of the last three parameters on the right-hand 
side of (4.4) enables one to construct the complete boundary-layer profile, if one 
uses the universal velocity profiles of Rotta (1962) or Clauser (1956). By dimen- 
sional analysis, one gets from (4.4) 

c,* = f (h/Y’, U*/UO). (4.5) 

One could also write down (4.5) on the basis of the study of Good & Joubert 
(1968) and the relation between u,h/v and h/y’ for smooth walls, viz. 

U* h/v  = 0*128h/y’, ( 4 4  

as was essentially done by Plate (1971). Equation (4.5) provides the basis for the 
analysis of data on smooth, rough and transitional boundaries. 

5. Experimental set-up and procedure 
The experiments were carried out in an open-circuit wind tunnel, shown 

diagrammatically in figure 5. The test section was 1 m square and 5 m long. 
The test wall was separated from the entrance cone and the tunnel sides; this 
had been done to facilitate studies with heated plates etc. This facility was used 
in this study with minor alterations. Wooden side walls five or more times as 
high as the fence and extending both upstream and downstream of the fence 
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Flow,, 

FIGURE 6. Fence used in study. 

were placed at the two sides of the test wall as shown in the figure. The results 
of Plate (1971) and Good & Joubert (1968) on the pressure distribution on the 
wall and the streamline pattern were used in deciding on the length and height 
of these side walls required to ensure practically two-dimensional flow. 

The longitudinal intensity of turbulence in the free stream of the tunnel was 
found to be 1.8%. However, this relatively high level of turbulence is not 
expected to affect the results, since the flow would always separate at the sharp 
edge of the fence in the range of Reynolds numbers used in this study. Subsequent 
comparison of the equilibrium-boundary-layer data with similar data collected 
a t  low turbulence level shows that the intensity of 1.8 % has little effect on the 
mean characteristics of the boundary layer. 

Three series of tests were conducted during this study: one with a smooth test 
wall, one in which the test wall was coated with uniform gravel of size 5.8 mm 
and a third in which the wall was coated with uniform gravel of size 2.8 mm. 
In  the first series, with the smooth wall, a 10 em wide sand roughness strip was 
placed at the upstream end of the test wall to ensure that the boundary layer 
was turbulent over the whole length of the wall. The fences were built out of 
Perspex to the shape shown in figure 6, so that the connexions from the pressure 
taps to the measuring instrument could be taken through the body of the fence, 
thus causing no obstruction to the flow. In  view of the sharp edge, the thickness 
of the fence is not expected to affect the results. The fence height ranged from 
1.5 to 7.5 cm and a number of pressure taps were provided on the two faces of 
each fence at the centre of its length. Fewer taps were provided on the down- 
stream face, since the pressure on this face is known to be constant over the 
height. In  a few cases the pressures were also measured a t  the quarter-points 
along the length to check for two-dimensionality of the flow. Though the pressure 
distribution over the height was not identical at  the three sections (the quarter- 
points and the centre), the resultant pressure force was practically the same, 
indicating that the flow was nearly two-dimensional. The analysis has been 
carried out on the assumption of two-dimensional flow. 

The pressures along the length of the tunnel were measured with the fences 
in place in every series and the ceiling was adjusted to obtain a flow with zero 
pressare gradient. Three stations along the test wall at distances of 1.50, 3-50 
and 3.50 m from the entrance were chosen as the fence positions. After the 
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required roughness had been glued onto the test wall, taking care to achieve a 
single layer of grains, the wooden side plates were positioned at the required 
station with respect to the fences in accordance with the criterion shown in 
figure 5. The velocity profile a t  the centre-line a t  this station was then measured. 
In  case of the 5.8 mm roughness, a constant-temperature DISA hot-wire anemo- 
meter was used for this purpose. A tungsten wire of diameter 5 pm was employed. 
I n  the other two series, a flattened total-head tube (of width 3 mm and outer 
thickness 0.5mm) was used, and the pressures were measured with a MKS 
Baratron pressure meter (Type 144). The Baratron was capable of measuring 
pressures as low as 0.003 mm Hg. The output of the Baratron or the hot-wire 
anemometer was fed into an AID converter followed by an integrator, wherein the 
integration could be carried out over a period of up to 100 s; the period of integra- 
tion chosen depended on the extent of fluctuations in the output. Thus avery high 
degree of accuracy was achieved in velocity and pressure measurements. For 
the series with the 2.8 mm gravel, three different velocities were used, whereas 
only two velocities were used in the other two series. 

After all the velocity profiles had been measured for a particular wallroughness, 
the required fence, with the wooden side plates, was placed a t  the desired station. 
The pressures on the two faces of the fence for the desired velocities were deter- 
mined with the help of a Scanivalve switch and the Baratron pressure transducer. 
The procedure was repeated for the other fences and the other stations, and again 
after the wall roughness had been changed. 

6. Analysis of experimental data 
6.1. Determination of u* and y' 

Since (4.5) forms the basis for the analysis of the data, the first step in the 
analysis was the determination of the parameters u* and y'. For this the detaibd 
boundary-layer velocity profiles were used along with the law of the wall (4.1). 
The main difficulty in using this procedure in case of a rough boundary is the 
uncertainty regarding the effective position of the boundary. It is common 
practice to try different effective positions and pick the one which gives a linear 
relation between log,, y and u in the wall region; this relation can then be used 
to get the values of u* and y' from (4.1). Using such a procedure, the values of 
u* and y' were calculated for all the runs; the value of Ic was taken to be 0-41 in 
accordance with Clauser (1956). The boundary-layer profiles were also used to 
calculate the displacement thickness S", defined as 

The computed parameters for the various boundary-layer profiles are listed in 
table 2.  

6.2. Characteristics of the turbulent boundarv layer 

A large number of velocity profiles on smooth and rough plates were measured 
during this study. Their detailed analysis led to several interesting results and 
it was considered worthwhile to present them. First, it  was possible to express 
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Series Test wall 

I Smooth 1.50 5.21 0.46 0.225 

1.50 10.20 0.435 0.41 

I1 Coated with 
5.8 mm gravel 
(average ks  = 
7.05 mm) 

2.8 mm gravel 
(average k ,  = 
3.35 mm) 

I11 Coated with 

1.50 5.17 1.19 0.335 
1.50 10.60 1.20 0.668 
2.50 5.33 1.80 0.326 
2.50 10.67 1.85 0.645 

1.50 5.23 1.06 0.30 
1.50 10.10 1.05 0.58 
1.50 2.46 0.97 0.142 
2.50 5.29 1.44 0.294 
2.50 10.10 1.46 0.568 
3.50 5.35 1.64 0.288 
3.50 10.30 1.64 0.56 
3.50 2.54 1.59 0.134 

y' k ,  = u*ks 

10-3 

- 
(mm) 30y' v 

8 . 0 0 ~  - - 

3.66X - - 
10-3 

0.23 6.9 157 
0.233 7.0 314 
0.245 7.35 154 
0.230 6.9 305 

0.112 3.37 67 
0.112 3.37 130 
0.0915 - 31.5 
0.116 3.50 65.5 
0.117 3.52 126 
0.104 3.12 64.2 
0.107 3.22 125 
0.087 - 30 

Boundary 

Smooth 

Smoot.11 

Rough 
Rough 
Rough 
Rough 

Rough 
Rough 
Transitional 
Rough 
Rough 
Rough 
Rough 
Transitional 

TABLE 2. Computed boundary-layer parameters 

the equations for the boundary-layer parameters in a unified manner valid for 
both smooth and rough walls. 

It is common practice to express the thickness of the boundary layer and the 
local skin-friction coefficient ct by relations similar to the following: 

for smooth walls, 1 6/x = f(UO./V) 

Cf = 2(u*/u,)2 =f(UoxIv) 

and cf = f(Uox/v, x/kJ for a transitional boundary. 
Following the suggestion of Rotta (1962) i t  was decided to use the displacement 

thickness as a reference thickness for the boundary layer, since it is more accu- 
rately determined than 6. Schlichting (1968, chap. 21) has given the following 
equations for 6 and cf for a smooth wall: 

6 0.377 0.059 -=- 
x (U,X/V)*' = (U,X/V)*' 

By using a +-power law for the velocity distribution, which is implied in the 
derivation of (6.4) and (6.5), one obtains 

6*/6 = Q. (6.6) 

P l y '  = 0*05O(~/y')g. (6.7) 

Combining (6.4)-(6.6) with (4.3), one gets 

Use of (6.5) in the derivation of (6.7) may be questioned in view of Rotta's (1962) 
comment that this equation predicts a coefficient about 5 yo too high. However, 
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FIGURE 7.  Growth of boundary layer on a flat plate. 

Source Good & Joubert Smith & Walker Present Present Present 
Boundary Smooth Smooth Smooth Transitional Rough 

0 0 0 + 0 

since the constant 0-059 appears to the power $ in (6.7), this error has no influence 
on 6*. 

The authors' data on boundary layers, with rough, transitional and smooth 
boundaries, along with some data from smooth-walled boundary layers by 
Good & Joubert (1968) and Smith & Walker (1958) are plotted on figure 7; 
equation (6.7) is also shown on this pfot. It is interesting to note that the experi- 
mental data for all three types of boundary show good agreement with (6.7), 
even though the velocity distribution in case of rough and transitional boundaries 
may not follow the +-power law a t  all. In  fact for a few rough-wall cases which 
were checked, the power was of the order of & to  $. Thus (6.7) provides a simple 
method of calculating 6" for any type of boundary. 

Rotta (1962) has derived an expression for the local skin-friction coefficient cf 
in terms of Uox'/v for a smooth wall, where x' is the distance from the virtual 
origin to the section under consideration. In  the authors' study, the test wall was 
detached from the entrance cone; and since the boundary layer was turbulent 
right from the leading edge, x' can be replaced by X. Now 



394 K .  G .  Ranga Raju, J .  Loeser and E. J .  Plate 

I I  I I I t  I I I I  I I I I I  
104 105 1 O6 107 

XIY) 

FIGURE 8. Local skin-friction coefficient for a turbulent boundary layer 
on a flat plate. Symbols as in figure 7. 

Y”*P* L’ll 

FIGURE 9. Dimensionless velocity profile in a turbulent boundary layer 
on a flat plate coated with 2.8 mm gravel. 

0 0 A n v + 
x (m) 1.50 1.50 2.50 2.50 3.50 3.50 1.50 3.50 
u* (m/s) 0.30 0.58 0.294 0.568 0.288 0-56 0.142 0.134 

C - V - J  I -__ -.” -----__-_ _J 

Rough Transitional 

But from (4.3) u*x/v = f(./V’)> 
so that Rotta’s expression for c j  in terms of U,x/v can be expressed in the form 
cj  = f(x/y’). The relation between these parameters has been worked out and is 
shown in figure 8. Data from many different sources and covering different flow 
regimes show good agreement with this relation. Figures 7 and 8 clearly show 
that the use of a roughness parameter like y’ enables presentation of the boundary- 
layer data in a simple form applicable for all flow regimes. They also lend support 
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L Mean line from figure 9 

395 

Y U * P  ull 
FIGURE 10. Dimensionless velocity profile in a turbulent boundary layer on a flat plate 
coated with 5.8 mm gravel. 

0 0 0 
x (m) 1.50 1.50 2.50 2.50 
u* (mls) 0.355 0.688 0.326 0.645 

14 c 

?lu*P*Uo 
FIGURE 11.  Dimensionless velocity profile in a turbulent boundary layer on a smooth wall. 
0, present results ; , Smith & Walker ; 0, Good & Joubert ; -, mean line from figure 9 ; 
--- , Rotta (1  962). 

to the use of the parameter y' in the subsequent analysis of the data on the form 
drag on fences. Further, since S"/y' and cf are both unique functions of x/y', i t  
is obvious that the ratio of the boundary-layer thickness A (defined as PUo/2c*) 
to  y f  is also a unique function of x/yf. 

The velocity distribution in the turbulent boundary layer over the entire 
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FIGURE 12. Typical pressure-difference distribution over fence height. h = 7.10 cm, 
u.* = 0.58 m/s, U, = 10.10 m/s, boundary roughness 2.8 mm gravel. 

region of turbulent flow is often expressed in the universal form (U, - u)/u* VS. 
yu*/S*U,. The relation between these parameters for the author’s data for the 
2.8 mm roughness is shown in figure 9. The data indeed fall on a single curve, 
but this curve differs for yu*/S*& < 0.10 from that proposed by Rotta (1962). 
The mean curve on figure 9 is, however, verified by the authors’ data for the 
5.8 mm roughness as well as smooth-wall data from different sources; see figures 
10 and 11.  It is to be noted that the data of Smith & Walker and Good & Joubert, 
with low free-stream turbulence, are fully in agreement with the authors’ data, 
for which this turbulence was higher, indicating that the turbulence level of 
1-8 yo has little influence on the mean velocity profile of the boundary layer. One 
may expect similar results in case of the drag on the fences. In  view of the wide 
range of data plotted in figures 9-11 and the relatively small number of data 
points used by Rotta by contrast (which also exhibit appreciable scatter), we 
strongly recommend the use of the velocity defect law shown in figures 9-11 
instead of Rotta’s plot. Since the nominal thickness S was not used in the present 
study, no comparison has been made with Coles’ wake function. 

6.3. Pressure distribution around the fences 

A detailed examination of the pressures around the fences indicated that the 
pressure on the rear face for any run was essentially constant, as had also been 
found by previous investigators. Therefore the pressure distribution diagrams 
were prepared in the form pu-pd us. y, where 2)d is the average pressure on the 
downstream face of the fence and pu is the pressure on the upstream face a t  a 
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FIGURE 13. c, 22?.6/h for gravel-coated w d s .  

0 Q 0 0 8 0 
( u * / ~ ) x  10’) 6.45 6.11 5.40 5.58 5.75 5.25 5.92 

Rough Transitional 
L ._ ?-------J - 

height y. The drag force on the fence was calculated by integration of the 
pressure-difference profile and from it, by using (2.6), (2.2) and (2.7), the values 
of C,, and C,* were obtained. A typical pressure-difference profile in dimensionless 
form is shown in figure 12. The shape of this profile differs from that for a fence 
in uniform flow (not shown here) a t  y /h  = 0.6-0.7 owing to the separation of the 
boundary layer upstream of the fence in case of boundary-layer flow. 

6.4, Form-drag coectficient of the fence 

Ranga Raju & Garde (1970) showed that a unique relation exists between the 
form-drag coefficient C,, and 6/h in the case of a smooth wall. This is not so if 
the wall is rough, with its consequent influence on the velocity profile, as is 
shown by figure 13. In  this figure the data for rough and transitional boundaries 
are seen to fall below the mean curve for fences on smooth boundaries. Thus, for 
rough walls constancy of 6/h would be an inadequate criterion for modelling 
atmospheric flow past structures. 

In addition, a plot of the parameter C,* vs. the parameter h/y’ was prepared 
in accordance with (4.5); see figure 14. In  it the data collected during this study 
as well as the data of Good & Joubert (1968) were used. The data of Plate (1964) 
and Ranga Raju & Garde (1970) are not included, since the undisturbed 
boundary-layer profiles of these studies were not detailed enough to enable 
computations of u*. Figure 14 shows clearly that C$ is uniquely related to h/y’ 
for all flow regimes. The parameter u*/U, has no influence on the drag coefficient 
of the fence. This implies in effect that U, (which affects only the velocity profile 
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FIGURE 14. Form-drag coefficient of two-dimensional fence in a turbulent boundary layer. 
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in the outer region of the boundary layer) has no direct influence on the drag on 
the fence. Also, the ratio S/h does not enter as a parameter even though for some 
runs the fence height was larger than the nominal thickness of the boundary 
layer. The range of 6/h for the data plotted in figure 14 is indeed quite large, from 
less than one to over twenty. It follows that only that part of the velocity profile 
which is close to the ground affects the separation of the boundary layer upstream 
of the fence, the velocity of the separating streamline at the edge of the fence (and 
consequently the pressure distribution), and the drag on the fence. On the other 
hand, the parameter u*/U, has no influence on the drag on the fence. The region of 
overlap of the smooth- and rough-wall data is small (though not that of the data 
in the transition region) and further studies on a rough wall at large h/y' would 
be helpful in proving the significance of the parameter hly'. Nevertheless the data 
in figure 14 do indicate strongly that the drag coefficient of a two-dimensional 
fence is uniquely related to hly'. In  generalizing this result one may infer that 
such a relation also exists for geometrically similarly shaped bluff bodies with 
sharp edges, provided their dimension in the flow direction is not large enough 
to cause reattachment of the boundary layer on the body itself. Should this 
conclusion be verified from studies on some such bodies, the modelling of such 
bluff bodies in turbulent boundary layers for the estimation of the drag on the 
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body requires only constancy of h/y’, apart from geometric similarity. Our study 
has thus furnished a proof for the two-dimensional special case of the validity 
of the modelling law of Jensen & Franck (1965). 

7. Conclusions 
The characteristics of a turbulent boundary layer under zero pressure gradient 

for rough, smooth and transitional boundaries are well described by figures 7-9. 
The form-drag coefficient of a two-dimensional fence placed in a turbulent 
boundary layer under zero pressure gradient is a unique function of hly’, implying 
that the velocity profile in the outer region of the boundary layer has no influence 
on the drag of the fence. 

The authors believe that the results of this study are of particular importance 
for modelling the flow around structures in high winds. A conjecture on which all 
modelling of wind forces on structures in wind tunnels is based is that a t  high 
enough values the Reynolds number is no longer a modelling parameter if the 
structure has sharp edges. As a modelling law one uses the condition that h/y  
must be the same for model and prototype. To our knowledge, the present 
experiments yielded the first definite proof that, at least for a fence, the drag 
coefficient is indeed fully determined by this ratio. Surprisingly, this result is not 
restricted to ratios of height of fence to boundary-layer thickness of 0.15 orlower, 
which is customarily held to denote the limit of validity of the logarithmic law. 
As a consequence, it may well mean that wind forces can be determined correctly 
on a model in which the boundary-layer velocity profile is not fully logarithmic 
over the height of structure, provided that the structure has sharp edges and its 
geometry precludes the possibility of reattachment of the boundary layer on the 
structure itself. 

The first author was the recipient of a fellowship from the Alexander von 
Humboldt foundation during the period of this research a t  Institut Wasserbau 
I11 in Karlsruhe. 
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